Chemistry II January 2012 Answer Key

1. E	6. E	11. E	16. D	21. B
2. E	7. E	12. C	17. B	22. D
3. C	8. B	13. A	18. A	23. C
4. B	9. C	14. E	19. D	24. D
5. A	10. D	15. D	20. A	25. B

CHEMISTRY II

JANUARY: matter and measurement, atomic theory(sub-atomic particles, atomic masses), chemical formulas, chemical equations(mole relationships, mass-mass problems), stoichiometry of redox solutions, stoichiometry of molar solutions, electronic structure and periodic table.

FEBRUARY: chemical bonding, electronegativity, Lewis structures, molecular geometry, polarity of molecules, hybridization, liquids, solids, vapor pressure, intermolecular forces, phase changes, gases, plus January topics.

MARCH: thermochemistry(enthalpy, Hess's Law, heats of formation, bond energies, calorimetry), molecular orbitals, non-metals, metals, solutions, colligative properties, descriptive chemistry of the elements, plus Jan and Feb topics.

APRIL: chemical equilibrium, rates of reactions, reaction mechanisms, acids, bases, and salts, Ka, Kb, Ksp, buffers, coordination compounds, redox, voltaic cells, Nernst equations, ΔS , ΔH , ΔG , nuclear chemistry, organic chemistry, descriptive chemistry of the elements, plus Jan, Feb., and Mar topics.

TESTING DAYS FOR THE NEW JERSEY SCIENCE LEAGUE 2011 – 2012

JANUARY TEST: Thursday January 12, 2012 FEBRUARY TEST: Thursday February 9, 2012 MARCH TEST: Thursday March 8, 2012 APRIL TEST: Thursday April 12, 2012

The April 2012 Exam date may change according to the schools in an area spring break.

New Jersey Science League www.enter.net/~njscil
PO Box 65
Stewartsville, NJ 08886-0065
Phone # (908) 213-8924
Ema il newjsl@ptd.net or njscil@enter.net

New Jersey Science League Chemistry II Exam January 2012

Answer the following questions on the answer sheet provided. Each correct response is worth 4 points. Use the letters for your answers. Choose the letter that best completes or answers the item. Be certain that erasures are complete. Please **PRINT** your name, school area code, and which test you are taking on the scan-tron.

- 1. Which of the following statements is correct?
 - A. The oxidation state of Mn in MnO_4^{2-} is +7.
 - B. The oxidation state of P in $P_2O_7^{4-}$ is +3.
 - C. The oxidation state of Ba in BaO_2 is +1.
 - D. The oxidation state of Cr in CrO_4^{2-} is +5.
 - E. The oxidation state of O in OF_2 is +2.
- 2. 10.0 g of Zn powder is added into a solution of silver nitrate, AgNO₃. The total mass of the metallic solid recovered at the end of the reaction is 12.32 g. Assuming that the reaction did not go to completion, how many grams of Zn did react?
 - A. 9.0
- B. 8.00
- C. 5.00
- D. 2.00
- E. 1.00
- 3. The following graph shows the logarithm of successive ionization energies (in kJ/mol) as electrons are removed from the atoms of a particular element.

This particular element belongs to which group of the periodic table?

- A. 2
- B. 3
- C. 14
- D. 16
- E. 18

- 4. Which of the following atoms has the smallest radius?
 - A. Br
- B. Cl
- C. P
- D. S
- E. Se
- 5. How many electrons are described by the following quantum set, n = 4; l = 2; $m_s = +\frac{1}{2}$?
 - A. 5
- B. 8
- C. 10
- D. 16
- E. 32

6. A group of researchers did an experiment to determine the mass ratio of titanium to oxygen in two different oxides. Their results are shown below:

From these results it can be deduced the formulae of the two metal oxides are:

	A.	B.	C.	D.	E.
Oxide 1	TiO	Ti ₂ O	Ti ₃ O	TiO ₂	Ti ₂ O ₃
Oxide 2	Ti ₂ O ₃	Ti ₃ O	Ti ₂ O	TiO ₃	TiO ₂

7. A compound consists only of C, H and N. The combustion of 20.4 mg of this compound releases 44.0 mg of CO_2 and 25.2 mg of H_2O . What is the empirical formula of this compound?

A.
$$C_3H_7N$$

B.
$$C_3H_7N_2$$

8. When the following redox reaction is balanced what is the coefficient of H₂O?

$$VO^{2+} + MnO_4^- + H_2O_1 \rightarrow V(OH)_4^+ + Mn^{2+} + H^+$$

D. 0.012

9. Convert 1.2 g/cm³ into kg/m³.

10. Mendeleev's early periodic table was published in 1872. Dmitri Mendeleev named which element "ekasilicon"?

11. Which of the following compounds is NOT correctly named according to IUPAC naming rules?

A. KAl(SO₄)₂•12H₂O

Potassium aluminum sulfate dodecahydrate

B. (NH₄)₂Cr₂O₇

Ammonium dichromate

C. KSCN D. P₄O₁₀ Potassium thiocyanate
Tetraphosphorus decoxide

E. K₂MnO₄

Potassium permanganate

12. A beaker contains 100.0 mL $0.20 M \text{ AgNO}_3$ solution (colorless). A second beaker contains 200.0 mL $0.15 M \text{ K}_2\text{CrO}_4$ solution (yellow). These two solutions are mixed in a third beaker and a precipitate is formed. Which of the following set of statements are CORRECT? (Note: solid potassium nitrate is white and solid silver chromate is red-brown).

The color of the supernatant solution	The color of the precipitate
A. Colorless	Red-Brown
B. Yellow	White
C. Yellow	Red-Brown
D. Colorless	Yellow
E. Yellow	Black

13. Which of the following solutions has the highest concentration of the bromide ion?

A. 400 mL 0.3 M NaBr D. 600 mL 0.3 M NaBrO₂
B. 600 mL 0.2 M NaBr E. 400 mL 0.2 M NaBrO₃
C. 400 mL 0.3 M NaBrO

14. The chloride impurity in a 2.00 g sample is determined by precipitating the chloride as silver chloride. If 4.80 mL of 0.250 M AgNO₃ solution is required, what is the mass percent of chloride in the sample?

A. 6.25 % B. 5.13 % C. 4.52 % D. 3.17 % E. 2.13 %

15. Which of the following transitions is visible to the human eye?

A.
$$n = 6 \rightarrow n = 4$$

B. $n = 6 \rightarrow n = 1$
C. $n = 5 \rightarrow n = 3$
D. $n = 4 \rightarrow n = 2$
E. $n = 3 \rightarrow n = 1$

16. The organic substitution reactions require the formation of the halogen radical. This is illustrated with the reaction between methane and bromine.

$$Br_2$$
 \rightarrow $Br + Br$.
 $CH_4 + Br$ \rightarrow $CH_3Br + H$.
 $H. + Br$ \rightarrow HBr

What is the frequency of the visible light that would break the bond between two bromine atoms? Bond energy of Br₂ is 193 kJ/mol.

A.
$$7.8 \times 10^{-10}$$
 s⁻¹ B. 3.6×10^{-15} s⁻¹ C. 2.4×10^{-14} s⁻¹ D. 4.8×10^{14} s⁻¹ E. 2.9×10^{38} s⁻¹ 17. Which of the following set of solutions will produce the largest mass of precipitate?

A. 10 mL 0.1 M AgNO₃ + 10 mL 0.2 M NaCl B. 10 mL 0.1 M Pb(NO₃)₂ + 20 mL 0.1 M KI

C. 10 mL 0.1 M AgNO₃ + 20 mL 0.2 M NaCl

D. 10 mL 0.1 M AgNO₃ + 20 mL 0.1 M NaCl

E. $10 \text{ mL } 0.1 \text{ MPb(NO}_3)_2 + 10 \text{ mL } 0.1 \text{ MKI}$

10, 11, g 01, 11,	3 reacts with 3.2 g of O	$NH_3 + 5O_2 \rightarrow$	Salva lavoration and the salva lavoration and		
	he reaction results in 90 B. 2.4 g	0% yield, what r C. 2.7 g D.		ll be produced? E. 3.3 g	
19. You want to	determine the density he density of the object	of an irregular se	olid object. W	hich of the following	ng is <u>NOT</u> needed
	A. Eye goggles B. Balance	i iii a iiigii seiloo	1 140:	D. A liquid de object	
	C. Graduated cylinder			E. A liquid les	s dense than the
20. Mg ²⁺ ions ca	an be precipitated with is the formula of the pr	aqueous (NH ₄) ₂ l	HPO ₄ and posi	object tively identified by	a magnesium
	A. MgHPO ₄	ccipitate:		D. Mg(HPO ₃) ₃	
	B. Mg ₂ HPO ₄			E. $Mg_3(PO_4)_2$	
	C. $Mg(HPO_4)_2$			L. WIG3(1 O4)2	
21. The equation 1815 kJ/mol.	$11 \text{ Al}^+(g) \text{ Al}^{2+}(g) + e^- r$	epresents the	ene	rgy of aluminum w	hich
	First blank		Second blan	<u>k</u>	
	A. First ionization		requires		
	B. Second ionization		requires		
	C. First electron affinit	y	requires		
	D. Second electron affi	inity	releases		
	E. Second ionization		releases		
22. Which of the A. Ca(N	following compounds O ₃) ₂ B. KI		ble in water at D ₃ D. MgCO		
23. 0.250 g of a string dried AgCl (143) in the mixture.	sample that contains or .5 g/mol) when reacted	aly NaCl (58.5 g. with excess silv	mol) and CaC er nitrate solu	Cl_2 (111 g/mol) yiel tion. Calculate the	ded 0.633 g of percent of NaCl
A. 10.0 9	% B. 25.0	C. 40.0) % D	0. 50.0 %	E. 60.0 %
] (]	following equations is A. 3Cu (s) + 8H ⁺ (aq) + B. Cu (s) + 2Ag ⁺ (aq) + C. Zn (s) + 2H ⁺ (aq) + D. SiCl ₄ (<i>l</i>) + 2H ₂ O (<i>l</i>) + E. PbO (s) + NH ₃ (g) +	- 8NO ₃ (aq) 3C Cu ²⁺ (aq) + 2Ag n ²⁺ (aq) + H ₂ (g) 4HCl (aq) + Si	$u^{2+}(aq) + 2N(s)$ (s) (2)	reaction? O(g) + 4H ₂ O(<i>l</i>)	
The diameter of	the Al foil are 10.00 cm each Al atom is about 2 Molar mass of Al is 2	$2.50 \times 10^{2} \text{ pm. W}$	The thickness nat is the mass	of the foil has 4.00 of the Al foil? The	0×10 ⁴ Al atoms.
A.0.273	g B. 0.546 g	C. 2.73	g I	D. 5.46 g	E. 0.0546
4 NJSL Chemist	ry II Exam January 201	L2			

Chemistry Formulas updated 8-20-2012

CHEMISTRY FORMULAS

	GASES, LIQUIDS,	d = <u>m</u>	P = pressure	R, Gas constant = 8.31 joules
	SOLUTIONS	v III	V = volume	mole kelvin
	V = nRT		T = Temperature	= 0.0821 <u>liter atm</u>
I	V - IIK I	$u_{rms} = \sqrt{\frac{3kt}{m}} = \sqrt{\frac{3RT}{M}}$	n = number of moles	mole kelvin
1	$D = \frac{2}{3} \times (V - h) = nDT$	u _{rms} = 1 = 1 1/1	d = density	= 8.31 volts coulombs
10	$P + \frac{n^2 a}{V^2} (V - nb) = nRT$	V M V 1/2	m = mass	mole kelvin
	V	2	v = velocity	
	- D V	$KE_{per molecule} = \frac{mv^2}{2}$	where $X_A = \underline{\text{moles } A}$	Boltzmann's constant, k = 1.38 x 10 ⁻²³ joule
1	$P_A = P_{total} X_A$	2	total moles	K
1.	-D + D + P +			K _{f water} = 1.86 Kelvin /molal
1	$P_{\text{total}} = P_A + P_B + P_C +$	$KE_{per mole} = \frac{3RTn}{2}$	u _{rms} = root-mean-square-	K _{b water} = 0.512 Kelvin /molal
1.		2	root	
1.	= m		KE = Kinetic energy	STP = 0.00 °C and 1.00 atm (101.3 kpa)
1 '	1 = <u>m</u> M	$r_1 \mid M_2$	r = rate of effusion	
	141	$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$	M = Molar mass	1 faraday 3 = 96,500 coulombs/ mole of
1.	Celvin = °C + 273	r2 V M1	$\pi = $ osmotic pressure	electrons
1 "	COVIII - C 1 215		i = van't Hoff factor	
	$P_1V_1 = P_2V_2$	M, molarity = moles solute	K _c = molal freezing point	
1.	141-1242	liter of solution	constant.	
1	1, = V.		K _b = molal boiling point	
1 7	$\frac{V_1}{V_1} = \frac{V_2}{V_2}$	molality = moles of solute	constant	
1.	1 •2	kg of solvent	O = reaction quotient	
F	$P_1V_1=P_2V_2$	No.	I =current in amperes	
1-	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	$\Delta T_f = iK_f$ molality	q = charge in coulombs	
	*1 *2		t = time	
			E° = standard reduction	
		$\Delta T_b = iK_b$ molality	potential	
			K = equilibrium constant	
		$\pi = \underline{nRTi}$		
		V		
				Was as a Market Market and a constant of the state of
1				

PERIODIC TABLE OF THE ELEMENTS										18 8A							
1A	1											13	14	15	16	17	2 He
H 1.008	2 2A											3A	4A	5A	6A	7A	4.003
3	4											5 B	6 C	7 N	8	9 F	10 Ne
Li 6,941	Be 9,012				¥							10,81	12.01	14.01	16,00	19.00	20.18
11 Na 22,99	12 Mg 24,31	3 3B	4 4B	5 5B	6 6B	7 7B	8 8B	9 8B	10 8B	11 1B	12 2B	Al 26.98	Si 28.09	P 30.97	S 32,07	Cl 35.45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	-29	30	31	32	33	34 Se	35 Br	36 Kr
K 39,10	Ca 40.08	Sc 44.96	Ti 47,88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58,93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.61	As 74.92	78,96	79.90	83,80
37	38	39	40	41	42	43	44	45 Rh	46 Pd	47	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
Rb 85.47	Sr 87.62	88.91	Zr 91.22	Nb 92,91	Mo 95.94	Tc (98)	Ru 101.1	102.9	106.4	Ag 107.9	112-4	114.8	118-7	121.8	127,6	126.9	131,3
55	56	57	72	73	74	75	76	77 Ir	78 Pt	79 Au	80 Ha	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
Cs 132.9	Ba 137.3	La 138.9	Hf 178.5	Ta 180.9	W 183.8	Re 186.2	Os 190,2	192.2	195.1	197.0	Hg 200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109 Mt	110	111	112		114				
(223)	(226)	AC (227)	Rf (261)	Db (262)	Sg (263)	Bh (262)	Hs (265)	(266)	(269)	(272)	(277)	L	(2??)				
		<u></u>	1 60	T (0	1 61	62	T 63	T 64	65	66	67	68	1 69	T 70	71	7	4
		58 Ce	59 Pr	60 Nd	61 Pm	Sm 150,4	Eu 152,0	Gd 157,3	Tb	Dy 162,5	Ho 1649	Er 167.3	Tm 168.9	Yb 173,0	Lu 175.0		
		90	91	92	93	94	95	96	97	98	99	100	101	102	103		
		Th 232.0	Pa	U 238.0	Np (237)	Pu (244)	Am (243)	(247)	Bk (247)	(251)	Es (252)	Fm (257)	(258)	No (259)	(262)		

CHEMISTRY FORMULAS 8-20-2012

	1/2202211 2 024/20	
ATOMIC STRUCTURE	E = energy	OXIDATION-REDUCTION
$\Delta E = h v$	v = frequency	ELECTROCHEMISTRY
$c = v \lambda$	$\lambda = \text{wavelength}$	
	p = momentum	$Q = \underbrace{[C]^{c}[D]^{d}}_{[A]^{a}[B]^{b}}$
$\lambda = \underline{h}$	v = velocity	
m v	n = principal quantum number	where $aB + bB \Leftrightarrow cC + dD$
	$c = $ speed of light 3.00 x 10^8 m/s	
p = m v	$h = Planck's constant = 6.63 \times 10^{-34} Joule s$	I = q/t $I =$ amperes, $q =$ charge in coulombs, $t =$ time
	$k = Boltzmann' constant = 1.38 \times 10^{-23}$	in seconds.
$E_n = -\frac{2.178 \times 10^{-18}}{n^2}$ joule	joule/K	
n ²	Avogador's number = 6.02×10^{23}	$E_{cell} = E_{cell}^{o} - RT \ln Q = E_{cell}^{o} - 0.0592 \log Q @ 25^{\circ}C$
	particles/mole	n3 n
	$e = electron charge = -1.602 \times 10^{-19}$	
	coulomb	$\log K = \underline{nE^{\circ}}$
	1 electron volt/atom = 96.5×10^{23} kj/mole	0.0592
	1 Angstrom(Å) = 1×10^{-10} meters	1 Faraday 3 = 96,500 coulombs/mole

	- 1 x 10 meters			
	,			
EQUILIBRIUM	EQUILIBIRUM TERMS		EQUATIONS	
$K_w = 1 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$	K _a = weak acid	$A_o - A =$	Kt A ₀ is initial con-	centration, amount.
	K_b = weak base	$ \ln \frac{A_o}{A} = k $	+	
$pH = -log[H^+]; pOH = -log[OH^-]$	$K_w = \text{water}$ $K_p = \text{gas pressure}$	$\frac{\Pi}{A} - \lambda$		
pH + pOH = 14	$K_p = gas pressure$ $K_c = molar$	1 1	¥ .	
	concentration	$\frac{1}{A} - \frac{1}{A} =$	= kt	
$pH = pK_a + \log [\underline{A}^{-1}]$		11 110		
[HA]		In (k2/k1)	$= (Ea/R)(1/T_1)$	$-1/T_{2}$).
$pOH = pK_b + \log [\underline{HB}^+]$		(2/1)	(====)(===1	
[B]				
$pK_a = -logK_a$, $pK_b = -logK_b$				
$K_p = K_c (RT)^{\Delta n}$				
∆n = moles product gas – moles reactant gas THERMOCHEMISTRY	S° = standard entropy			
$\Delta S^{\circ} = \sum \Delta S^{\circ} \text{ products} - \sum \Delta S^{\circ} \text{ reactants}$	H° = standard enthalpy		METAL ACT	IVITY SERIES
$\Delta H^{\circ} = \sum \Delta H^{\circ}$ products $-\sum \Delta H^{\circ}$ reactants	G° = standard free ener E° = standard reduction		Metal	Metal Ion
$\Delta H = 2\Delta H$ products – $2\Delta H$ reactants	T = temperature	potentiai	Lithium	Li ⁺¹
$\Delta G^{\circ} = \sum \Delta G^{\circ}$ products $-\sum \Delta G^{\circ}$ reactants	q = heat		Potassium	K ⁺¹
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	c = specific heat capaci	ty	Calcium	Ca ⁺²
$\Delta G^{\circ} = \Delta H - 1\Delta S$ $\Delta G^{\circ} = -RT \ln K = -2.303 RT \log K$	$C_p = \text{molar heat capacit}$	y at	Sodium	Na ⁺¹
	constant pressure			
$\Delta G^{\circ} = -n\Im E^{\circ}$	1 faraday $\Im = 96,500$ coulombs/mole		Magnesium	Mg ⁺² Al ⁺³
$\Delta G = \Delta G^{\circ} + RT \ln Q = \Delta G^{\circ} + 2.303 RT \log Q$			Aluminum	A1
$q = m C \Delta T$	$C_{\text{water}} = 4.18 \text{ joule}$		Manganese	$\frac{Mn^{+2}}{Zn^{+2}}$
C. AV	g K $H_f = 330 \text{ joules} \text{for w}$	rater	Zinc	Zn -+2 c +3
$C_p = \Delta H$ ΔT	gram		Chromium	Cr^{+2} , Cr^{+3}
$q = mH_f$	$H_v = 2260 \text{ joules}$ for v	water	Iron	Fe ⁺² , Fe ⁺³
$q = mH_v$.	gram		Lead	Pb ⁺² , Pb ⁺⁴
			Copper	Cu ⁺¹ , Cu ⁺²
			Mercury	Hg ⁺²
			Silver	Ag ⁺¹
			Platinum	Pt ⁺²
			Gold	Au ⁺¹ , Au ⁺³