| Practio | ce Test Chapters 6 &                | & 16                                          |                   |                                     |                       |             |                          |            |       |
|---------|-------------------------------------|-----------------------------------------------|-------------------|-------------------------------------|-----------------------|-------------|--------------------------|------------|-------|
|         | -                                   |                                               |                   |                                     |                       |             |                          |            |       |
| Name_   |                                     |                                               |                   |                                     |                       |             |                          |            |       |
|         |                                     |                                               |                   |                                     |                       |             |                          |            |       |
| MULT    | TPLE CHOICE. C                      | hoose the one alternativ                      | ve that be        | st completes                        | the stateme           | nt or ansv  | vers the qu              | estion.    |       |
|         | 1) When a system                    | , ΔE is <u>alwa</u>                           | <u>ys</u> negativ | re.                                 |                       |             |                          |            |       |
|         |                                     | at and does work                              |                   |                                     |                       |             |                          |            |       |
|         | B) gives off h                      | eat and does work                             | -> bo             | th cases e                          | energy is             | leaving     | the sys                  | tem        |       |
|         | C) gives off he                     | eat and has work done                         | on it             |                                     |                       |             |                          |            |       |
|         | D) absorbs he                       | at and has work done o                        | n it              |                                     |                       |             |                          |            |       |
|         | E) none of the                      | e above is <u>always</u> n <mark>egati</mark> | ve.               |                                     |                       |             |                          |            |       |
|         | 2) Which one of th                  | ne following is an exothe                     | ermic prod        | cess?                               |                       |             |                          |            |       |
|         | A) ice melting                      |                                               |                   |                                     |                       |             |                          |            |       |
|         | B) boiling sou                      | р                                             |                   |                                     |                       |             |                          |            |       |
|         | C) water evap                       | orating                                       |                   |                                     |                       |             |                          |            |       |
|         | (D) condensation                    | on of water vapor                             |                   |                                     |                       |             |                          |            |       |
|         | E) Ammoniur                         | n thiocyanate and bariu                       | m hydrox          | ide are mixed                       | d at 25°C: th         | ie tempera  | iture drops              | G.         |       |
|         | 3) A Δl                             | H corresponds to an                           | r                 | process.                            |                       |             |                          |            |       |
|         | A) negative, er                     |                                               | Г                 |                                     |                       |             |                          |            |       |
|         | B) negative, ex                     |                                               |                   |                                     |                       |             |                          |            |       |
|         | C) positive, ex                     |                                               |                   |                                     |                       |             |                          |            |       |
|         | D) zero, exotho                     |                                               |                   |                                     |                       |             |                          |            |       |
|         | E) zero, endotl                     |                                               |                   |                                     |                       |             |                          |            |       |
| 4       |                                     | y of the system)<br>rgy can be increased by   |                   |                                     |                       |             |                          |            |       |
|         |                                     | (3)                                           | -                 | •                                   |                       |             |                          |            |       |
|         |                                     | ng heat from the surrou                       |                   |                                     |                       |             |                          |            |       |
|         |                                     | ng heat from the system                       | n to the su       | rroundings                          |                       |             |                          |            |       |
|         | (c) doing wo                        | rk on the system                              |                   |                                     |                       |             |                          |            |       |
|         | A) c only                           | B) a only                                     | 0                 | a and c                             | D) 1                  | o and c     | F                        | E) b only  |       |
| 5       | ) The value of ΔH formed in the rea | for the reaction below action?                | is -126 kJ.       | How much                            | heat (in kJ)          | is released | when 2.00                | mol of Na( | OH is |
|         | 2Na <sub>2</sub> O <sub>2</sub>     | (s) + $2H_2O(I) \rightarrow 4Na$              | OH (s) +          | O <sub>2</sub> (g)                  |                       |             |                          |            |       |
|         | A) -126                             | B) 7.8                                        |                   | 63                                  | D) 3                  | 3.9         | F                        | E) 252     |       |
|         |                                     |                                               | $\cup$            |                                     |                       |             |                          |            | O.I   |
|         |                                     |                                               |                   | e they shi<br>consiste<br>a negativ | ent and p<br>it sign! | ut          | -126 KJ;<br>4mol<br>NaO+ | Zmol No    | ioh : |
|         |                                     |                                               |                   |                                     |                       |             | ,000                     | •          |       |

| 6)  | S is kJ.                                   | r the reaction below is $O_2(g) \rightarrow 2SO_3(g)$ | 1                                                  | y change accompanying  Impl S - 790k  32.06g ZmdS    | g the reaction of 0.95 g of ${ m 	extsf{J}}$                            |   |
|-----|--------------------------------------------|-------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|---|
|     | A) 12                                      | B) 23                                                 | C) -23                                             | D -12                                                | E) -790                                                                 |   |
| 7)  | The molar heat capa substance is           |                                                       | ith the formula $C_2H_6$                           | SO is 88.0 J/mol-K. Th                               |                                                                         |   |
|     | A) -88.0                                   | B 1.13                                                | C) 88.0                                            | D) $6.88 \times 10^3$                                | E) 4.89 mol·k × 16.9                                                    |   |
| 8)  | _                                          |                                                       | _                                                  | n the temperature of the s 0.90 J/g-K, the mass o    | sample increases from f the sample is g.                                |   |
|     | A) 1.5                                     | B) 6.6                                                | C) 65                                              | D) 8.1                                               | E) 72                                                                   |   |
| 9)  |                                            |                                                       |                                                    | heat (J) is required to ra<br>uid bromine: 3.12 g/mL |                                                                         | 2 |
|     | A) 5.20                                    | B) 16.2                                               | C) 10.4                                            | D) 300                                               | E) 32.4                                                                 |   |
| 10) | sample of NaOH dis                         | ssolves in 250.0 g of wa                              | nter in a coffee-cup ca                            |                                                      | 4 kJ/mol. When a 13.9-g<br>ture increases from 23.0°<br>e., 4.18 J/g-K. |   |
|     | A) 37.8°C                                  | B) 35.2°C                                             | C) 40.2°C                                          | D) 37.0 C                                            | E) 14.0°C                                                               | 1 |
| 11) | Given the following                        | reactions                                             |                                                    | heatiost                                             | T= (363 0) 01                                                           | • |
|     | 3 × ( Fe <sub>2</sub> O <sub>3</sub> (s) + | 3CO (s) → 2Fe (s) +                                   | 3CO <sub>2</sub> (g) △H =                          | = -28.0 kJ                                           | Theat gained by Solution                                                |   |
|     | 2 × ( 3Fe (s) + 40                         | $CO_2$ (s) $\rightarrow$ 4CO (g) +                    | Fe <sub>3</sub> O <sub>4</sub> (s) $\triangle$ H = | : +12.5 kJ) ho need                                  | T= (263.9)(4.18) DT. Theat garned by solution  to flip either one       |   |
|     | the enthalpy of the r                      | eaction of Fe <sub>2</sub> O <sub>3</sub> with        | CO                                                 |                                                      |                                                                         |   |
|     | 3Fe <sub>2</sub> O <sub>3</sub> (s)        | $+ CO(g) \rightarrow CO_2(g)$                         | + 2Fe <sub>3</sub> O <sub>4</sub> (s)              |                                                      |                                                                         |   |
|     | is kJ.<br>A) 40.5                          | B) -15.5                                              | C)-59.0                                            | D) -109                                              | E) +109                                                                 |   |
| 12) | The value of ΔH° for                       | the reaction below is -                               | -186 kJ.                                           |                                                      |                                                                         |   |
|     | $H_2(g) + Cl$                              | $_2(g) \rightarrow 2HCl(g)$                           |                                                    |                                                      |                                                                         |   |
|     | The value of $\Delta H_f^{\circ}$ for      | r HCl (g) isk                                         |                                                    |                                                      |                                                                         |   |
|     | A) -186                                    | B) $-3.72 \times 10^2$                                | C) $-1.27 \times 10^2$                             | D)-93.0<br>and formed                                | E) +186                                                                 |   |
|     |                                            | Aus in fac Ime                                        | sle of a compo                                     | and formed                                           | -186/2                                                                  |   |

| 13) For which one of the following reaction:  A) $12C(g) + 11H_2(g) + 11O(g) \rightarrow$ B) $(1/2)N_2(g) + O_2(g) \rightarrow NO_2(g)$ C) $6C(g) + 6H(g) \rightarrow C_6H_6(l)$ D) $P(g) + 4H(g) + Br(g) \rightarrow PH_4Br$ | $C_6H_{22}O_{11}(g) \leftarrow 0$ form  H found as $H_{\perp}$ (I) $\leftarrow H + Br$ diatom | of timote of O2 made from their             | Product(compound)<br>om its elements<br>"standard States" |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------|
| E) N <sub>2</sub> (g) + 3H <sub>2</sub> (g) $\rightarrow$ 2NH <sub>3</sub> (g)  14) Of the following, $\Delta H_f$ is <u>not</u> zero for                                                                                     | Zmales product Fz +                                                                           | Clangases light<br>D) C (graphite)          | a solid                                                   |
| A) $CI_2(g)$ B) $N_2(g)$                                                                                                                                                                                                      | (c) F <sub>2</sub> (s)                                                                        | D) C (graphite)                             | E) O <sub>2</sub> (g)                                     |
| 15) For the species in the reaction below, $\Delta H$                                                                                                                                                                         | f is zero for                                                                                 |                                             |                                                           |
| $2\text{Co}(s) + \text{H}_2(g) + 8\text{PF}_3(g) \rightarrow$                                                                                                                                                                 | 2HCo(PF <sub>3</sub> ) <sub>4</sub> (l)                                                       |                                             |                                                           |
| A) PF <sub>3</sub> (g) B) H <sub>2</sub> (g) C) Co (s) D) HCo(PF <sub>3</sub> ) <sub>4</sub> (1)                                                                                                                              | ∆H°f ù                                                                                        | zero for elemen<br>(in their star           | nts<br>ndard states)                                      |
| E) both Co(s) and H <sub>2</sub> (g)                                                                                                                                                                                          |                                                                                               |                                             |                                                           |
| 16) Given the data in the table below, $\Delta H^{\circ}_{TXI}$                                                                                                                                                               | n for the reaction                                                                            |                                             |                                                           |
| $Ca(OH)_2 + 2H_3AsO_4 \rightarrow Ca(H)$                                                                                                                                                                                      |                                                                                               |                                             | Sec7                                                      |
| is kJ.                                                                                                                                                                                                                        | [(-2346)+(2)(-                                                                                | 285.9)] -[(-986.6)+(                        | (2)(-900.4)]=                                             |
| SubstanceΔHf' (kJ/mol)Ca(OH)2-986.6H3AsO4-900.4Ca(H2AsO4)2-2346.0H2O-285.9                                                                                                                                                    |                                                                                               |                                             |                                                           |
| A) -130.4 B) -76.4                                                                                                                                                                                                            | C) -744.9                                                                                     | D) -4519                                    | E) -4219                                                  |
| 17) The value of $\Delta H$ for the reaction below is                                                                                                                                                                         | s 44 kJ:                                                                                      |                                             |                                                           |
| $H2O(I) \rightarrow H_2O(g)$                                                                                                                                                                                                  |                                                                                               |                                             |                                                           |
| The value of $\Delta H_f$ of $H_2O(g)$ is                                                                                                                                                                                     | kJ/mol.                                                                                       |                                             |                                                           |
| A) -242<br>B) 330                                                                                                                                                                                                             |                                                                                               |                                             |                                                           |
| C) 242                                                                                                                                                                                                                        | Charles 1:                                                                                    | on Nood AHO.                                | for liquid                                                |
| D) -330                                                                                                                                                                                                                       | Sneaky questi<br>water to cony                                                                | on. Need $\Delta H^o_f$ pletely answer Uhis | question                                                  |
| (E) More information is needed.                                                                                                                                                                                               |                                                                                               |                                             | U                                                         |

18) Given the data in the table below,  $\Delta H^{\circ}$  for the reaction

$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

is \_\_\_\_\_ kJ.

| Substance             | $\Delta H_{f}^{\circ}$ (kJ/mol) |
|-----------------------|---------------------------------|
| CO (g)                | -110.5                          |
| $CO_2(g)$             | -393.7                          |
| CaCO <sub>3</sub> (s) | -1207.0                         |

[(2)(-3937)]-[(2)(-1105)+0]

- A) -677.0
- B) 283.3
- C) -566.4

  - E) The  $\Delta H^{\circ}_{f}$  of O<sub>2</sub> (g) is needed for the calculation.

19) For which one of the following reactions is the value of  $\Delta H^{\circ}_{rxn}$  equal to  $\Delta H^{\circ}_{f}$  for the product?

- A)  $N_2(g) + O_2(g) \rightarrow 2 NO(g)$   $\leftarrow$  2 moles product
- B)  $2 H_2 (g) + O_2 (g) \rightarrow 2 H_2 O (l)$
- C)  $H_2O(l) + 1/2O_2(g) \rightarrow H_2O_2(l)$   $\leftarrow$  H2O not an element D)  $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$   $\leftarrow$  H2O Standard state is a liquid
- E) 2 C (s, graphite) + 2 H<sub>2</sub> (g)  $\rightarrow$  C<sub>2</sub>H<sub>4</sub> (g)

20) A 50.0-g sample of liquid water at 25.0 C is mixed with 29.0 g of water at 45.0 C. The final temperature of the water is \_\_\_\_\_°C. The specific heat capacity of liquid water is 4.18 J/g-K.

- A) 27.6

- (50)(4/18)(T-25) = (29)(4/18)(45-T)

21) A reaction that is spontaneous as written \_\_\_\_\_

- (A) will proceed without outside intervention
  - B) is also spontaneous in the reverse direction
  - C) is very rapid
  - D) has an equilibrium position that lies far to the left
  - E) is very slow

22) ΔS is be positive for the reaction \_\_\_\_\_

$$(A) BaF2 (s) \rightarrow Ba2+ (aq) + 2F- (aq)$$

B)  $2NO_2(g) \rightarrow N_2O_4(g)$ 

- C)  $2Hg(1) + O_2(g) \rightarrow 2HgO(s)$
- D)  $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
- E)  $CO_2(g) \rightarrow CO_2(s)$

Synthesis: usually bsis neg.

| 23) Which one of the following processes produ                        | ces a decrease in the entro | opy of the system?     |                   |
|-----------------------------------------------------------------------|-----------------------------|------------------------|-------------------|
| A) freezing water to form ice                                         |                             | ,                      |                   |
| B) melting ice to form water                                          |                             |                        |                   |
| C) dissolution of solid KCl in water                                  |                             |                        |                   |
| D) mixing of two gases into one container                             |                             |                        |                   |
| E) boiling water to form steam                                        |                             |                        |                   |
| 20 777 1                                                              |                             |                        |                   |
| 24) Which one of the following processes produc                       | ces a decrease of the entro | ppy of the system?     |                   |
| A) dissolving sodium chloride in water                                |                             |                        |                   |
| B) sublimation of naphthalene                                         |                             |                        |                   |
| C) boiling of alcohol                                                 |                             |                        |                   |
| D) explosion of nitroglycerine                                        |                             | nodered                |                   |
| (E) dissolving oxygen in water                                        | g-sag is more               | Ordered                |                   |
| 25) ΔS is negative for the reaction                                   |                             |                        |                   |
| A) NH <sub>4</sub> Cl (s) $\rightarrow$ NH <sub>3</sub> (g) + HCl (g) | decomposing                 | · ·                    |                   |
| B) $PbCl_2(s) \rightarrow Pb^{2+}(aq) + 2Cl^{-}(aq)$                  | decomposing > mon           | re disorder            |                   |
|                                                                       |                             |                        |                   |
| C) 2C (s) + $O_2$ (g) $\rightarrow$ 2C $O_2$ (g)                      | Solid -> gas                |                        |                   |
| D) $H_2O(I) \rightarrow H_2O(g)$                                      | liquit -> gas               |                        |                   |
|                                                                       | 3 miles gas - 2 m           | sus gas (more or       | der)              |
| 26) The value of AC at 272 V for the acidation of                     |                             | 76 7 7                 |                   |
| 26) The value of $\Delta G$ at 373 K for the oxidation of             | solid elemental sultur to   |                        |                   |
| $S(s, rhombic) + O_2(g) \rightarrow SO_2(g)$                          |                             | SG: -269.9 KJ-         | (373(.0116 K/k)   |
| is kl/mal At 200V Alls for this was                                   |                             | 1 ACO : 0 da 2 T/TC    |                   |
| is kJ/mol. At 298K, ΔH° for this reac<br>A) +4,597 B) +300.4          |                             | 5.000                  | 3                 |
| A) +4,39/ b) +300.4                                                   | C) -4,597                   | D) -300.4              | E) -274.2         |
| 27) A common name for methanol (CH <sub>3</sub> OH) is w              | ood alcohol. The normal     | boiling point of metha | nol is 64.7°C and |
| the molar enthalpy of vaporization if 71.8 kJ/s                       |                             |                        |                   |
| 64.7°C isJ/K.                                                         |                             | 3                      | ( )               |
| A) $5.21 \times 10^7$ B) $2.39 \times 10^3$                           | C 457                       | D) 2.39                | E) 0.457          |
| AT B.P. 6=0                                                           |                             |                        |                   |
| A-HINET . (000                                                        | -5.00                       |                        |                   |
| 0 = 71.8 KJ/mol - (337.                                               |                             |                        |                   |
| 1 S= 212.6 J/mol·K                                                    | x 2.15mol =                 |                        |                   |
|                                                                       |                             |                        |                   |
|                                                                       |                             |                        |                   |

*Use the table below to answer the questions that follow.* 

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

| Substance            | $\Delta H^{\circ} f (kJ/mol)$ | $\Delta G^{\circ} f (kJ/mol)$ | S (J/K-mol) |                                                   |
|----------------------|-------------------------------|-------------------------------|-------------|---------------------------------------------------|
| Carbon               |                               |                               |             |                                                   |
| C (s, diamono        | 1.88                          | 2.84                          | 2.43        |                                                   |
| C (s, graphite       | ) 0                           | 0                             | 5.69        |                                                   |
| $C_2H_2(g)$          | 226.7                         | 209.2                         | 200.8       | 7.6                                               |
| $C_2H_4(g)$          | 52.30                         | 68.11                         | 219.4       | [4](213.6) + (2)(4.91)]-[(2)(200.8) + (5)(205.0)] |
| $C_2H_4(g)$          | -84.68                        | -32.89                        | 229.5       |                                                   |
| CO (g)               | -110.5                        | -137.2                        | 197.9       |                                                   |
| $CO_2(g)$            | -393.5                        | -394.4                        | 213.6       |                                                   |
| Hydrogen             |                               |                               |             |                                                   |
| $H_2(g)$             | 0                             | 0                             | 130.58      |                                                   |
| Oxygen               |                               |                               |             |                                                   |
| O <sub>2</sub> (g)   | 0                             | 0                             | 205.0       |                                                   |
| H <sub>2</sub> O (l) | -285.83                       | -237.13                       | 69.91       |                                                   |

28) The combustion of acetylene in the presence of excess oxygen yields carbon dioxide and water:

$$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(l)$$

The value of  $\Delta S$  for this reaction is \_\_\_\_\_ J/K. B) +689.3 A) +432.4

C) +122.3D) -122.3

29) For the reaction

$$C(s) \ + \ H_2O(g) \ \rightarrow \ CO(g) \ + \ H_2(g)$$

 $\Delta H^{\circ} = 131.3 \text{ kJ/mol and} \Delta S^{\circ} = 133.6 \text{ J/K} \cdot \text{mol at 298K}$ . At temperatures greater than \_\_\_\_\_\_C this reaction is spontaneous under standard conditions.

A) 273

32) A reaction that is not spontaneous at low temperature can become spontaneous at high temperature if  $\Delta H$  is \_\_\_\_\_ and  $\Delta S$  is \_\_\_\_\_.

(A) +, +

B) -, -

C) +, -

D) -, +

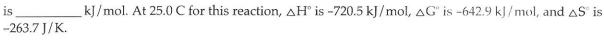
E) +, 0

33) Given the following table of thermodynamic data,

| Substance            | $\Delta H_{f}$ (kJ/mol) | S° (J/mol • K) |
|----------------------|-------------------------|----------------|
| PCl <sub>3</sub> (g) | -288.07                 | 311.7          |
| PCl <sub>3</sub> (1) | -319.6                  | 217            |

Pa3(e) -> Pa3(g)

not spontaneous al low T, but spontaneous out night


complete the following sentence. The vaporization of PCl<sub>3</sub> (l) is \_\_\_\_\_\_.

DH=+31.5 KJ/ml DS=+94.7 KJ/ms

- A) nonspontaneous at all temperatures
- B) spontaneous at low temperature and nonspontaneous at high temperature
- (C) nonspontaneous at low temperature and spontaneous at high temperature
  - D) spontaneous at all temperatures
  - E) not enough information given to draw a conclusion

34) The value of  $\triangle G^{\circ}$  at 141.0°C for the formation of phosphorous trichloride from its constituent elements,

$$P_2(g) + 3Cl_2(g) \rightarrow 2PCl_3(g)$$



A)  $1.08 \times 10^5$ 

B) -829.7

C)  $3.65 \times 10^4$ 

D) -683.3

E) -611.3

35) For a given reaction,  $\triangle H = 35.5$  kJ/mol and  $\triangle S = 83.6$  J/K-mol. The reaction is spontaneous \_\_\_\_\_. Assume that  $\triangle H$  and  $\triangle S$  do not vary with temperature.

(A) at T > 425 K

B) at T < 298 K

O= 35.5 - T(.0836)

- C) at T > 298 K
- D) at T < 425 K
- E) at all temperatures

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

| Substance             | $\Delta H^{\circ}_{f}$ (kJ/mol) | $\Delta G^{\circ}_{f}$ (kJ/mol) | S(J/K-mol)   |
|-----------------------|---------------------------------|---------------------------------|--------------|
| Calcium               |                                 |                                 |              |
| Ca (s)                | ()                              | 0                               | 41.4         |
| CaCl <sub>2</sub> (s) | -795.8                          | -748.1                          | 80,400,60,40 |
|                       | -793.0                          | -/46.1                          | 104.6        |
| $Ca_2^+$ (aq)         | 226.7                           | 209.2                           | 200.8        |
| Chlorine              |                                 |                                 |              |
| Cl <sub>2</sub> (g)   | ()                              | 0                               | 222.96       |
| Cl- (aq)              | -167.2                          | -131.2                          | 56.5         |
| Oxygen                |                                 |                                 |              |
| $O_2(g)$              | ()                              | 0                               | 205.0        |
| $H_2O(1)$             | -285,83                         | -237.13                         | 69.91        |
| Phosphorus            |                                 |                                 |              |
| $P_2$ (g)             | 144.3                           | 103.7                           | 218.1        |
| PCl <sub>3</sub> (g)  | -288.1                          | -269.6                          | 311.7        |
| POCl <sub>3</sub> (g) | -542.2                          | -502.5                          | 325          |
| Sulfur                |                                 |                                 |              |
| S (s, rhombic)        | ()                              | 0                               | 31.88        |
| $SO_2(g)$             | -269.9                          | -300.4                          | 248.5        |
| SO <sub>3</sub> (g)   | -395.2                          | -370.4                          | 256.2        |
| 503(5)                | 070.4                           | -370.4                          | 250.2        |

30) The value of  $\Delta H$  for the formation of POCl3 from its constituent elements,

$$P_2(g) + O_2(g) + 3Cl_2(g) \rightarrow 2POCl_3(g)$$

31) For the reaction

$$C_2H_6(g) \rightarrow C_2H_4(g) + H_2(g)$$

 $\Delta H^{\circ}$  is +137 kJ/mol and  $\Delta S$  is +120 J/K • mol. This reaction is \_\_\_\_\_.

- A) spontaneous only at low temperature
- B) unreliable
- C) nonspontaneous at all temperatures
- D) spontaneous only at high temperature
  - E) spontaneous at all temperatures

T=1141K
Taborethis temp
To be spontaneous

## Answer Key

Testname: NEW 6 AND 16.TST

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) B
- 2) D
- 3) B
- 4) C
- 5) C
- 6) D
- 7) B
- 8) A
- 9) B
- 10) D
- 11) C
- 12) D
- 13) B
- 14) C
- 15) E
- 16) A
- 17) E
- 18) C
- 19) E
- 20) D
- 21) A 22) A
- 23) A
- 24) E
- 25) E
- 26) E
- 27) C
- 28) E
- 29) B
- 30) B
- 31) D
- 32) A 33) C
- 34) E
- 35) A