Livingston Public Schools | Month | Major Topics | Phenomenon-Based Question | Science & Engineering Practices | Crosscutting Concepts | |-----------|--|---|--|--| | September | Scientific Investigation Measurement | | Planning and carrying out investigations Collaboration Analyzing and interpreting Data | Cause and effectSystems and system ModelsStructure and Function | | October | Scientific Investigation | How can you investigate phenomena and discover the unknown? | Developing and using models Analyzing and interpreting data Collaboration Using math/computational thinking Asking questions/defining problems | Scale, proportion and quantity Systems and system models Energy and Matter: Flow, cycles, conservation Patterns Stability and Change | | | Forces Newton's 1 st Law Speed and Acceleration of Objects | | | | | November | Forces Newton's Second Law Newton's 3 rd Law Friction Gravity Acceleration due to gravity | How do amusement parks work? | Analyzing and Interpreting Data Using math/computational thinking Planning and carrying out investigations | Cause and effect Scale, proportion and quantity Patterns Stability and Change | | December | Energy Potential vs. Kinetic Energy | How is energy transferred | Developing and Using models Planning and carrying out investigations collaboration Constructing explanations and designing solutions | Cause and Effect System and system models Energy and matter: flow, cycles, conservation Stability and Change | | January | Energy Energy Conversions Energy Conservation Heat Transfer | and yet conserved in a baseball game? | Asking questions and defining problems Planning and carrying out investigations Analyzing and interpreting data Collaboration Constructing explanations and designing solutions | Cause and Effect Energy and matter: flow, cycles, conservation Models | |----------|--|--|---|---| | February | Intro to Chemistry How to use Periodic Table Atoms and Elements Atomic Structure Subatomic Particles Isotopes Organization of Periodic Table Molecules and Compounds | How does a fireworks | Asking questions and defining problems Planning and carrying out investigations Analyzing and interpreting data Using math/computational thinking | Systems and system models Patterns Structure and Function Stability and Change | | March | Chemical Reactions Chemical Equations Law of Conservation of Mass Ionic and Covalent Ions Bonding Balancing Equations States of Matter Phase Changes | display confirm the laws of conservation of mass and energy? | Developing and using models Collaboration Constructing models and designing solution | Patterns Cause and Effect Energy and Matter: Flow, cycles, conservation | | April | Waves and EM Radiation Wave Properties | | Developing and using models Planning and carrying out | Systems and system models Energy and matter: flow, cycles, conservation | | Wave Interactions Refraction, Reflection and Diffraction Light Interactions | How can we use waves to transfer energy and information to Astronauts? | investigations Asking questions/defining problems | Structure and function | |---|--|---|--| | Electricity and Magnetism Magnetic fields Voltage, current and resistance Generators and motors | | Planning and carrying out investigations Collaborations Developing and using models | Cause and effect System and system models Structure and function |