Name: ______ CHAPTER 17: THERMOCHEMISTRY

Period:_____

SPECIFIC HEAT CAPACITY

1. Units of heat:

Joule: metric unit for heat/energy

calorie: amount of energy needed to change 1 gram of water 1°C

kilocalorie (Calorie or food calorie)

2. Specific Heat Capacity how much energy it takes to change 1 gram of something's temp. by 1°C

low specific heat capacity: it takes less energy to raise the temp (ex: metal)

high specific heat capacity: it takes more energy to raise the temp (ex: water)

3. Specific Heat Capacity – think about it!

- 1. Which substance below would have the highest specific heat capacity? Which would have the lowest?
 - a. sand, water, air water = highest, sand = lowest
 - b. iron, granite, glass glass = highest, iron = lowest
- 2. Look at the table of specific heat capacities below.

Substance	Specific Heat Capacity		
aluminum	0.897 J/g°C		
iron	0.454 J/g°C		
lead	0.130 J/g°C		
Which substance h	eats up the quickest?	lead	If each of th

substances above absorbs 1000J of heat, which would become the hottest? Why? Lead – it takes the least amount of energy to raise its temperature

Practice specific heat problems:

a. The specific heat capacity of aluminum is 0.897 J/g°C. Determine the amount of heat released when 10.5g of aluminum cools from 240°C to 25°C.

H = m x (sh) x ΔT = 10.5g (0.897 J/g°C) (215) = 2024.98 J

b. The specific heat capacity of aluminum is 0.897 J/g°C. What mass of aluminum can be heated from 33°C to 99°C using 450J of heat?

H = m x (sh) x Δ T 450 J = m (0.897 J/g°C) (66) 7.6g = m

Calorimetry: heat gained by water = heat lost by process $m(sh)(\Delta T) = m(sh)(\Delta T)$

insulated inner vessel air space

1. 55.0g of a "mystery metal" is heated to 93°C in a hot water bath, and is then placed in a calorimeter containing 100.0g of water at 25°C. The metal sits in the water until the temperature levels off at 29°C. At this point, both the metal and the water are at 29°C. The specific heat capacity of water is 4.18 J/g°C. Find the specific heat capacity of the metal.

	METAL	WATER IN CALORIMETER
mass	55g	100 g
specific heat capacity	?	4.18 J/g°C
T _{initial}	29 °C	29 °C
T _{final}	93 °C	25 °C
ΔΤ	64 °C	4 °C

a. Use H = m x (sh) x ΔT to find the amount of heat gained by the water.

$$H = 100(4.18)(4)$$

$$H = 1672 J$$

b. How much heat was lost by the metal?

1672 J (same amount of energy gained by the water!!)

c. Use H = m x (sh) x Δ T to find the specific heat capacity of the metal. 1672 = 55(sh)(64) 0.475 J/g°C = sh

CALORIMETER

2. 84.0g of a metal are heated to 99°C in a hot water bath, and then placed in a coffee cup calorimeter containing 60.0g of water at 32°C. The final temperature in the calorimeter is 42°C. What is the specific heat of the metal?

	METAL	WATER IN CALORIMETER
mass	84.0 g	60.0g
specific heat capacity	?	4.18 J/g°C
T _{initial}	99°C	32°C
T _{final}	42°C	42°C
ΔΤ	57 °C	10 °C

$$\begin{split} m(sh)(\Delta T) &= m(sh)(\Delta T) \\ 84.0g(sh)(57 \ ^{\circ}C) &= 60.0g(4.18 \ J/g^{\circ}C)(10 \ ^{\circ}C) \\ sh &= 0.52 \ J/g^{\circ}C \end{split}$$

3. The specific heat of aluminum is 0.90 J/g°C. 30.0g of aluminum are heated in a hot water bath to 98°C, and added to a calorimeter containing water at 25°C. The final temperature in the calorimeter is 32°C. What mass of water was in the calorimeter?

	METAL	WATER IN CALORIMETER
mass	30.0g	??
specific heat capacity	0.90 J/g°C	4.18 J/g°C
T _{initial}	98°C	25°C
T _{final}	32°C	32°C
ΔΤ	66 °C	7 °C

$$\begin{split} m(sh)(\Delta T) &= m(sh)(\Delta T) \\ 30.0g(0.90 \text{ J/g}^{\circ}\text{C})(66 \ ^{\circ}\text{C}) &= m(4.18 \text{ J/g}^{\circ}\text{C})(7 \ ^{\circ}\text{C}) \\ sh &= 60.9g \end{split}$$

4. 124.0g of aluminum (sh = $0.90 \text{ J/g}^{\circ}\text{C}$) are heated to 99°C in a hot water bath, and then placed in a coffee cup calorimeter containing 65.0g of water. The final temperature in the calorimeter is 43°C. What was the initial temperature of the water?

	METAL	WATER IN CALORIMETER
mass	124.0g	65.0g
specific heat capacity	0.90 J/g°C	4.18 J/g°C
T _{initial}	99°C	
T _{final}	43°C	43°C
ΔΤ	56 °C	X = 23.0 °C

$$\begin{split} m(sh)(\Delta T) &= m(sh)(\Delta T) \\ 124.0g(0.90 \text{ J/g}^{\circ}\text{C})(56 \ ^{\circ}\text{C}) &= 65.0g(4.18 \text{ J/g}^{\circ}\text{C})(\ \Delta T) \\ \Delta T &= 23.0 \ ^{\circ}\text{C} \end{split}$$

 $43 \ ^{\circ}C + 23.0 \ ^{\circ}C = 66.0 \ ^{\circ}C$

***5. 125.0g of copper (sh \approx 0.40 J/g°C) are heated to 97°C in a hot water bath, and then placed in a coffee cup calorimeter containing 42.0g of water at 23°C. Find the final temperature in the calorimeter.

	METAL	WATER IN CALORIMETER
mass	125.0g	42.0g
specific heat capacity	0.40 J/g°C	4.18 J/g°C
T _{initial}	97°C	23°C
T _{final}	Х	X
ΔΤ	97.0°C -Tf	Tf-23.0°C

$$\begin{split} m(sh)(\Delta T) &= m(sh)(\Delta T) \\ 125.0g & (0.40 \text{ J/g}^{\circ}\text{C}) & (97.0^{\circ}\text{C} \text{ -Tf}) = 42.0g & (4.18 \text{ J/g}^{\circ}\text{C}) & (\text{Tf-}23.0^{\circ}\text{C}) \\ 4850 &- 50\text{Tf} = 175.6\text{Tf} - 4037.9 \\ 8887.9 &= 225.6\text{Tf} \\ 39.4 \ ^{\circ}\text{C} &= \text{Tf} \end{split}$$

HEATING CURVE FOR WATER

Vocabulary:

heat of fusion: energy necessary to melt one gram of a substance at its melting point, energy given off when one gram of a substance freezes at its freezing point

heat of vaporization: energy needed to boil one gram of a substance at its boiling point, energy

released if a gram of a substance condenses

kinetic energy: energy of motion (temperature)

potential energy: energy of position (stored energy) - energy you have because you "are"

The uata bei	ow are for wat	$(\Pi_2 O)$				
Melting	Boiling	Heat of	Heat of	SH Capacity	SH Capacity	SH Capacity
point	Point	Fusion	Vaporization	(solid)	(liquid)	(vapor)
0.0°C	100.0°C	334 I/g	2260 I/g	2.05 I/g°C	/ 18 I/œ℃	1 00 I/œC
0.0 C	100.0 C	55 4 5 /g	2200 J/g	2.05 J/g C	4.10 J/g C	1.70 J/g C

The data below are for water (H₂O)

1. Draw a heating curve for substance water, going from -20°C to 125°C on the axis below. Write in all formulas used to calculate heat.

- b. Determine the amount of heat necessary to convert 15.0g of water at 100.0°C to steam at 100.0°C.
 - $H = mH_v$ H = 15(2260)

H = 33,900 J $\Delta H = __+___$

c. Determine the amount of heat necessary to convert 15.0g of ice at 0.0°C to liquid at 0.0°C.

$H = mH_{f}$ H = 15(334)	H = 5010 J
	ΔH =+

d. Determine the amount of heat given off when 25g of water cools from 56.2°C to 33.5°C.

$H = m(sh)(\Lambda T)$	H = 2372.15 J
$H = 25g(4.18 \text{ J/g}^{\circ}\text{C})(22.7^{\circ}\text{C})$	
	$\Delta H = \$

e. Determine the amount of heat needed to raise the temperature of 19.6g of X from -15°C to -2.0°C.

$H = m(sh)(\Delta T)$	H = 522.34 J	
$H = 19.6g(2.05 \text{ J/g}^{\circ}\text{C})(13^{\circ}\text{C})$	$\Delta H = -$	
		6

MORE HEAT PRACTICE

The data ber	ow refers to un		stance, m			
Melting	Boiling	Heat of	Heat of	SH Capacity	SH	SH (vapor)
point	Point	Fusion	Vaporization	(solid)	(liquid)	
32.0°C	112.0°C	425 kJ/g	695 kJ/g	2.3 J/g°C	5.9 J/g°C	1.1 J/g°C

The data below refers to an unknown substance, X.

2. Draw a heating curve for substance X, going from 15°C to 125°C on the axis below. Write in all formulas used to calculate heat.

b. Determine the amount of heat released when 15.0g of gaseous X at 112.0°C changes to liquid at 112.0°C.

$H = mH_v$	
H = 15g (695 kJ/g)	

H = 10425 J ΔH = _-___

c. Determine the amount of heat necessary to convert 15.0g of solid X at 32.0°C to liquid at 32.0°C.

$H = mH_{f}$	
H = 15g (425 kJ/g)	

H = 6375 J ΔH = __+___

m = 11.9 g

d. Determine the mass of X that can be heated from 38°C to 102°C using 4500J of heat.

 $H = m(sh)(\Delta T)$ 4500 J = m (5.9 J/g°C) (64 °C)

e. Find the final temperature if 150g of X, at 19°C, receives 650J of heat.

 $H = m(sh)(\Delta T)$ 650 J = 150 (2.3 J/g°C) (T_f - 19 °C) $T_{\rm f} = 20.88 \ ^{\circ}{\rm C}$ $\Delta {\rm H} = _+__{--}$

MULTI-STEP HEAT PROBLEMS

The data below Telefs to an anknown Substance, 21						
Melting	Boiling	Heat of	Heat of	SH Capacity	SH	SH (vapor)
point	Point	Fusion	Vaporization	(solid)	(liquid)	
14.0°C	86.0°C	150 J/g	550 J/g	4.3 J/g°C	5.2 J/g°C	1.1 J/g°C

The data below refers to an unknown substance, X.

1. Draw a heating curve for substance X, going from 2°C to 120°C on the axis below. Write in all formulas used to calculate heat.

b. Determine the amount of heat necessary to change 30g of X from solid at 4°C to liquid at 14°C.

STEP 1: $H = m(sh)(\Delta T)$ STEP 2: $H = mH_f$ $= 30g (4.3 J/g^{\circ}C) (14-4)$ = (30g) (150 J/g)= 1290 J= 4500 J

TOTAL: 1290 J + 4500 J = 5790 J

c. How much heat will be released when 25g of X cools from 110°C to 50°C?

ENTHALPY OF CHEMICAL REACTIONS

ENERGY AND STOICHIOMETRY

1. Consider the following reaction:

- $2 \text{ S} + 3 \text{ O}_2 \rightarrow 2 \text{ SO}_3 + 791.4 \text{ kJ}$
- a. Does the reaction absorb or release heat?
- b. Is the reaction endothermic or exothermic?
- c. What is the value of ΔH ?
- d. Draw an enthalpy diagram for the reaction.

- e. How much heat will be given off if 10.0g of sulfur burn in excess oxygen?
- f. What mass of sulfur must burn in excess oxygen in order to release 250kJ of heat?

2. Consider the following reaction:

$H_2 + Br_2 \rightarrow 2 HBr$ $\Delta H = 72.80 kJ$

a. Does the reaction absorb or release heat?

- b. Is the reaction endothermic or exothermic?
- c. On which side of the reaction would heat appear?
- d. Draw an enthalpy diagram for the reaction.

- e. How much heat is required to form 125g of HBr?
- f. What mass of HBr can be formed if 525kJ of heat are absorbed by the reaction?

THERMODYNAMICS: ENERGY & ENTROPY IN CHEMICAL REACTIONS

Enthalpy of a Reaction (Δ H): change in heat ($H_{\text{products}} - H_{\text{reactants}}$)

 $\Delta H = "+" = endothermic = H absorbed$

 $\Delta H =$ "-" = exothermic = H released

Entropy: (ΔS) – change in order/how disorganized a substance is

 $\Delta S = "+" =$ system is more disorganized

 $\Delta S =$ "-" = system is less disorganized

Which process(es) below would have a positive change in entropy (ΔS)?

- a. cleaning your room $-\Delta S$
- b. a bottle breaking $+\Delta S$
- c. leaves falling off of a tree $+\Delta S$
- d. water freezing $-\Delta S$

States of matter, solutions and entropy:

Solid	Liquid	Aqueous (solution)	Gas

Determine the signs of ΔH and ΔS for:

a.	ice melting	ΔH =+	$\Delta S = _+_$
b.	steam condensing	ΔH =	$\Delta S = _\$
c.	sublimation	ΔH =+	$\Delta S = _+_$

Which reactions below would have a positive change in entropy (ΔS)?

a.
$$Al_2(CO_3)_3(s) \rightarrow Al_2O_3(s) + 3CO_2(g)$$

Positive ΔS

b. $KCl(aq) + Br_2(l) \rightarrow KBr(aq) + Cl_2(g)$

Positive ΔS

c.
$$FeCl_2(aq) + H_2SO_4(aq) \rightarrow FeSO_4(s) + HCl(aq)$$

Negative ΔS

How can you tell if a reaction will be *spontaneous*? (able to occur?)

ΔS	change in entropy	ΔH	change in heat	Spontaneous???
+	more disorder	-	exothermic	Yes – it can occur at any temp.
			releases heat	
+	more disorder	+	endothermic	Spontaneous at high temperature
			requires heat	
-	less disorder/more order	-	exothermic	Spontaneous at low temperature
			releases heat	
-	less disorder/more order	+	endothermic	No – it cannot occur
			requires heat	

- 1. Determine whether each reaction will have a positive or negative change in entropy (ΔS).
- 2. Label each reaction as endothermic or exothermic.
- **3.** Determine which reaction(s) below will naturally occur (be spontaneous)? Which will require added energy? Which will only occur naturally at low temperatures?

a.
$$\operatorname{Na_2CO_3}_{(s)} \rightarrow \operatorname{Na_2O}_{(s)} + \operatorname{CO_2}_{(g)}$$

b. $\operatorname{Mg}_{(s)} + 2\operatorname{HCl}_{(aq)} \rightarrow \operatorname{MgCl_2}_{(aq)} + \operatorname{H_2}_{(g)}$
c. $\operatorname{N_2}_{(g)} + 3\operatorname{H_2}_{(g)} \rightarrow 2\operatorname{NH_3}_{(g)}$
d. $2\operatorname{KCl}_{(s)} + 3\operatorname{O_2}_{(g)} \rightarrow 2\operatorname{KClO_3}_{(s)}$
 $\Delta S = _ -_$ $\Delta H = -91.8 \mathrm{kJ}$
Spontaneous? $_$ $\Delta H = -91.8 \mathrm{kJ}$
Spontaneous? $_ @ \operatorname{low} \operatorname{temp} _$