Limiting Reagent Worksheet

- 1) Copper (II) chloride reacts with sodium nitrate.
- a) Write the balanced equation for the reaction given above:

b) If 15.0 grams of copper (II) chloride react with 20.0 grams of sodium nitrate, how much sodium chloride can be formed?

- d) How many grams of copper(II) nitrate is formed?

How much of the excess reagent is left over in this reaction?

15.0g Cucl₂ × $\frac{Imol Cucl₂}{I34.5g}$ × $\frac{2 mol NaND_3}{Imol Cucl₂}$ × $\frac{85.0g}{Imol}$ = 18.959 → 19.0g used

20.0g - 19.0g = 1.0g left NaNO₂

- Lead (II) nitrate reacts with sodium iodide. 2)
- Write the balanced equation: a)

If I start with 25.0 grams of lead (II) nitrate and 15.0 grams of sodium iodide, how many grams of b)

- NaI What is the limiting reagent in the reaction described in problem 2? c)
- How many grams of lead(II) iodide is formed? d)

How much of the nonlimiting reagent will be left over from the reaction in problem #2? e)

low much of the nonlimiting reagent will be left over from the reaction in problem 42.

15.0g NaI
$$\times \frac{I m d NaI}{I 49.9g} \times \frac{I m d Pb(NO3)}{2 m ol NaI} \times \frac{331.29}{I m d Pb(NO3)} = 16.69$$

25.0g — 16.6g = 8.4g Pb(NO3)

remains left over have used

If 6.00 grams of sodium nitrate are formed in the reaction described in problem #2, what is the percent f) yield of this reaction?

- 1000. grams of sodium chloride is combined with 2000. grams of barium phosphate. 3)
- Write the balanced equation: a)

the balanced equation:
$$6 \text{ Na Cl} + \text{Ba}_3(\text{PO}_4)_2 \longrightarrow 2 \text{ Na}_3 \text{ PO}_4 + 3 \text{BaCl}_2$$

What is the limiting reactant? I May Nacl & mot Nas Poy = 1000g Nacl x 58,59 x Lamel Nacl b).

Nacl is the limiting reactant

- How many grams of excess reactant are left? $ImHBa_3(PO_4)_{\perp} \times \frac{601.99}{ImH} = 17159 Ba_3(PO_4)_{\perp}$ $\frac{10009 Nacl_{\times} \frac{ImHNacl_{\times}}{58.59} \times \frac{ImHNacl_{\times}}{ImHNacl_{\times}} \times \frac{601.99}{ImH} = 17159 Ba_3(PO_4)_{\perp}}{2000.9 17159} = 2859 Ba_3(PO_4)_{\perp}$ $\frac{2000.9 17159}{have} = 4859 Ba_3(PO_4)_{\perp}$ c)
- A chemist combines 5.00g of sodium with 150.0g of 15.0% by mass solution of magnesium chloride. 4)

Write a balanced equation for the reaction.

a)

Determine the number of grams of excess reactant **b**)

$$C_7H_{16} + 11 O_2 \rightarrow 7 CO_2 + 8 H_2O_3$$

How many grams of excess reactant are left?
$$\frac{100.29}{70009} \times \frac{1 mol O_2}{32.09} \times \frac{1 mol O_2}{11 mol O_2} \times \frac{100.29}{1 mol C_7 H_{16}} = 19929 = 19929 = 1008g C_7 H_{16}$$

Have Used 19ff over

ydrochloric acid. The excess of this reaction is then reacted with grams of silver are recovered?
$$\frac{1000g \text{ must be in excess! U}}{2n + 2 \text{ AgNO}_3} > \frac{2n(NO_3)}{2n} + \frac{2 \text{ AgNO}_3}{65.4g2n} \times \frac{2m! \text{ AgNO}_3}{|m| 2n} \times \frac{107.9 \text{ grams}}{|m| \text{ AgNO}_3} = \frac{3.43g \text{ AgNO}_3}{3.43g \text{ AgNO}_3}$$

12.5 g of copper are reacted with an excess of chlorine gas. If the percent yield is 90.2%, how many 7) grams of copper (II) chloride are obtained?

In the reaction of Zn with HCl, 140.15 g of ZnCl₂ was formed. If the percent yield is 87.2%, how 8) many grams of zinc were originally used?